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Abstract

Nanotechnology and nanomaterials have had a significant
positive impact within the biomedical field for quite some
time, and have included cardiovascular, cartilage, and
neural tissue engineering applications. Due to its potential
for treating neural tissue, current research is investigating
the use of nanomaterials for spinal cord injury (SCl), an
injury characterized by tissue damage and the disruption
of communication between the brain to the body. To treat
such an injury, cell-based therapy has shown promising
results, and the following papers are recommended. This
communication will focus on nanoparticle, carbon
nanotubes, and self-assembling peptide approaches for
treating SCI, as well as concerns of toxicity.
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Abbreviations

CBN: Carbon Based Nanomaterial; IKVAV: Isoleucine-Lysine-
Valine-Alanine-Valine; MWCNT: Multi  Walled Carbon
Nanotubes; PA: Peptide Amphiphile; SCI: Spinal Cord Injury;
SPIO: Superparamagnetic Iron-Oxide; SWCNT: Single Walled
Carbon Nanotubes; GLAST: GLutamate Aspartate Transporter;
PEG: Polyethylene Glycol; PEGDA: {DD{AEP (Polyethylene
Glycol Diacrylate{Dodecylamine{1-(2-Aminoethyl)Piperazine);
PNIPAAM: Poly(n-Isopropylacrylamide); PEDOT: Poly(3,4-
Ethylene Dioxythiophene)

Introduction

Nanotechnology and nanomaterials have had a significant
positive impact within the biomedical field for quite some
time, and have included cardiovascular, cartilage, and neural
tissue engineering applications [1,2]. Due to its potential for
treating neural tissue, current research is investigating the use

of nanomaterials for spinal cord injury (SCl), an injury
characterized by tissue damage and the disruption of
communication between the brain and the body. To treat such
an injury, cell-based therapy has shown promising results, and
the following papers are recommended [3,4]. This
communication will focus on nanoparticle, carbon nanotubes,
and self-assembling peptide approaches for treating SCI
(Figure 1), and will also address toxicity concerns.

Figure 1 There are several approaches to treating spinal
cord injury. A few common approaches include (a) using
nanoparticles as drug delivery systems (yellow), self-
assembling peptides to form nano bers thus creating a
scaffold to promote regeneration, and (b) carbon
nanotubes, which offer favorable conductive and material
properties for SCI.

Nanoparticle Approaches

Nanoparticles are popularly used as a drug delivery system,
because they are capable of crossing the cell membrane due
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to their size. Wu et al. have shown that by using nanoparticles
composed of ferulic acid modified glycol chitosan, there is an
improved circulation time of the particles, and can arrive at
both gray and white matter [5]. Their spinal cord contusion
injury rat model exhibited significant locomotor function
recovery after intravenously receiving nanoparticles two hours
after the injury. The significance of this study lies in their
success of observing therapeutic effects after a prolonged
post-treatment time period.

Drug-loaded poly (methyl methacrylate) nanoparticles show
potential for administrating treatment in activated microglia
and macrophages to reduce secondary in ammatory events in
SCI [6]. Papa et al. found that these nanoparticles exhibited
internalization within microglial cells after thirty minutes and
plateaued after three hours of treatment. Furthermore, by
tuning the surface charge and PEGylation, the cell uptake can
be controlled.

Another study proposes using methylprednisolone-loaded
dendrimer nanoparticles to produce a favorable microglial
post-injury response and viability [7]. The left dorsal side of
their rat models' spinal cord was surgically removed, thus
impairing locomotion. After administration of the
nanoparticles, the models show significant improvement in
their functional outcome; the authors attribute this result to
the sustained release of methylprednisolone modulating the in
ammation following injury, specifically the microglial
population density.

To efficiently repair damage to the spinal cord, a group
suggests introducing gold nanoparticles to 3D nano ber
scaffolds [8]. Gold nanoparticles were loaded onto the surface
of electrospun PCL/gelatin nano bers. Neuronal cells were
seeded onto the nanocomposite scaffolds, resulting in the
growth of elongated axons forming 3D networks.

Furthermore, because superparamagnetic iron-oxide (SP10)
nanoparticles can be visualized by MRI, this material has
successfully been used for in vivo tracking of transplanted
cells. This technology offers a noninvasive method to
determine successful cell engraftment, and monitor cell
migration and viability [9].

Self-Assembling Peptide Approaches

Self-assembling peptides o er a convenient way to combat
SCI because they o er a non-invasive procedure by forming
nano fibers upon injection into tissue. For example, one group
succeeded in using peptide amphiphile (PA) molecules
enhanced with isoleucine-lysine-valine-alanine-valine (IKVAV)
that self-assemble into nano fibers for mice SCI therapy [10].
IKVAV is found in laminin and is known to promote neurite
sprouting and to direct neurite growth [11]. After nine weeks
from the SCI injury, mice within the IKVAV PA group showed
significant improvement. They attribute the favorable results
to the fact that the nano fibrils inhibited scar formation.

IKVAV PA consistently shows promising contributions to
developing SCI therapy. Tysseling et. al used this injectable
self-assembling peptide with both their mice and rat models.
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This group suggests the increased serotonergic bers in the
caudal spinal cord and regeneration of the dorsal column
sensory axons were due to the IKVAV PA injection. It also
produced functional improvements within their specimens
[12]. To compare the results after injection between IKVAV PA
and control groups, the study used the BBB scale for modified
mouse [13].

RADA16-l peptide, a type of self-assembling nano ber
scaffold, has also been shown to promote neural progenitor
cell and Schwann cell survival, migration, and differentiation
both in vitro and in vivo [14]. When the scaffold is pretreated
with culture medium before transplantation, the implants
integrate well and show a significant number of host cells that
migrate into the scaffold. This two-way cell migration between
the scaffold and host tissue is essential behavior towards
efficient SCI repair.

Liu et al. used peptide QL6, which self-assembles into-sheets
at neutral pH, as their therapeutic agent for SCI [15]. This study
found a favorable distribution of the nano bers after injection
and almost full degradation by eight weeks. Furthermore, their
scaffold exhibited reduced astrogliosis and in ammation. The
group suggests that QL6 allows for axonal preservation and
regeneration due to its capability of inhibiting glial scar
formation and reducing in ammation.

Carbon Nanotube Approaches

Carbon nanotubes are cylindrical structures with a radius
within the 1 nm to 100 nm range, composed of a concentric
geometry of a single cylinder (single-walled) or multiple
cylinders  (multi-walled) [16]. These  carbon-based
nanostructures feature conductive and mechanical properties
favorable for neurological applications, in addition to showing
a desirable impact on neuronal cell morphology and
excitability.

The neurotransmitter glutamate has been demonstrated to
lead to neuronal cell death during excitotoxic processes. To
maximize the uptake of extracellular glutamate by astrocytes
after spinal cord injury, a study developed polyethylene glycol
functionalized single-walled carbon nanotubes (SWCNT-PEG)
[17]. The functionalized carbon nanotubes were introduced to
cortical astrocytes from neonatal mouse pups in solution.
Images of the astrocytes showed favorable effects on the
morphology of the astrocytes in addition to an increase in the
reactivity of the glutamate transporter GLAST on the cell
surface. The authors suggest the results could minimize the
progressive degenerative effects that occur after a spinal cord
injury.

Sang et al. co-polymerized PEGDA-DD-AEP, n-isopropyl
acrylamide, and SWCNTs to produce a heat sensitive injectable
hydrogel for promoting nerve tissue regeneration [18]. After
the SWCNT {PNIPAAM hydrogel was injected into a SCI rat
model, images showed neuronal migration into the injury site.
Results presented a reduction of nerve tissue scarring after
hydrogel implantation.
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Another possible treatment for SCI is providing stimulation
to the dorsal root ganglion. By combining the conducting
polymer PEDOT and MWCNTs, Kolarcik et al. developed a
coating material for the electrode surface to decrease
impedance at electrode-tissue interface [19]. The coating
material was also doped with dexamethasone, an anti-in
ammatory drug. The addition of the electrode coating resulted
in a significant decrease in neuronal cell damage and death
while doping with dexamethasone caused a reduced in
ammatory response.

Toxicity Concerns

The clinical relevance of SCl treatment that exploits the
enhanced material properties of nanotechnology depends
heavily on whether researchers can confirm non-toxic effects
on the patient. This topic has been heavily debated for quite
some time now, especially because of the multitude of
variables at hand when using nanostructures in a biological
system. For example, there exists significant variability in the
manufacturing methods, raw materials, and reaction scaling to
create uniform nanomaterials [20]. Furthermore, several
material properties affect their interaction with the biological
system such as size, shape, surface area, chemical
composition, lattice structure, surface chemistry, surface
charge, and aggregation state [21].

Carbon-based  nanomaterials  (CBNs) are  highly
controversial. There have been reports of adverse effects
through inhalation of CBNs, cell death, and inhibited cell
proliferation [22,23]. To circumvent this issue,
functionalization of CBNs is a standard approach that directly
affects the degree of cytotoxicity [24]. Nonetheless, studies
using CBNs for SCI should specifically address toxicity, and go
as far as determining a dosage threshold. Thus, the effects of
CBNs in biological systems must be adequately quantified
before offering any practical clinical treatment.

Outlook on Future Research

Significant progress for developing SCI treatment has been
made; however, there are still several obstacles to overcome.
For example, often proposed therapies require an almost
immediate application (fifteen minutes), thus severely limiting
its practicality. Scaffolds' degradation and release rates of
implanted growth factors or cytokines may also pose an issue.
These scaffolds must promote an adequate response from
seeded materials, such as cells or drugs, but must also allow
for host cells to thrive all while keeping in ammation to a
minimum. Furthermore, as researchers turn to more natural
scaffolds, the material properties of the gels become
increasingly complex. It is crucial to further understand the
effects of these variables on both the host cells and the
neighboring tissue.

Carbon-based nanomaterials are appealing for treatment of
neuronal tissue because of their unique conductive properties.
Additionally, new approaches for modifying the surface of
CNTs, either by functionalization or drug loading, suggest that
the full extent of these nanostructures' application is still
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largely unknown. However, the toxicity of CNTs remains a
concern. In order to someday use carbon-based nanomaterials
in a clinical setting, it is critical to gain a greater understanding
of the toxic effects of CNTs on specific tissue types.
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